Архитектура хранилищ данных: традиционная

Введение

Итак, архитектура хранилищ данных меняется. В этой статье рассмотрим сравнение традиционных корпоративных хранилищ данных и облачных решений с более низкой первоначальной стоимостью, улучшенной масштабируемостью и производительностью.

Хранилище данных – это система pim , в которой собраны данные из различных источников внутри компании и эти данные используются для поддержки принятия управленческих решений.

Компании все чаще переходят на облачные хранилища данных вместо традиционных локальных систем. Облачные хранилища данных имеют ряд отличий от традиционных хранилищ:

  • Нет необходимости покупать физическое оборудование;
  • Облачные хранилища данных быстрее и дешевле настроить и масштабировать;
  • Облачные хранилища данных обычно могут выполнять сложные аналитические запросы гораздо быстрее, потому что они используют массовую параллельную обработку.

 

Традиционная архитектура хранилища данных

Следующие концепции освещают некоторые из устоявшихся идей и принципов проектирования, используемых для создания традиционных хранилищ данных.

Трехуровневая архитектура

Довольно часто традиционная архитектура хранилища данных имеет трехуровневую структуру, состоящую из следующих уровней:

  • Нижний уровень: этот уровень содержит сервер базы данных, используемый для извлечения данных из множества различных источников, например, из транзакционных баз данных, используемых для интерфейсных приложений.
  • Средний уровень: средний уровень содержит сервер OLAP, который преобразует данные в структуру, лучше подходящую для анализа и сложных запросов. Сервер OLAP может работать двумя способами: либо в качестве расширенной системы управления реляционными базами данных, которая отображает операции над многомерными данными в стандартные реляционные операции (Relational OLAP), либо с использованием многомерной модели OLAP, которая непосредственно реализует многомерные данные и операции.
  • Верхний уровень: верхний уровень — это уровень клиента. Этот уровень содержит инструменты, используемые для высокоуровневого анализа данных, создания отчетов и анализа данных.